3.1435 \(\int \frac{(A+C \cos ^2(c+d x)) \sec ^{\frac{7}{2}}(c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=394 \[ \frac{2 \sqrt{a+b} \left (-3 a^2 (3 A+5 C)+2 a A b-8 A b^2\right ) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{15 a^3 d \sqrt{\sec (c+d x)}}+\frac{2 (a-b) \sqrt{a+b} \left (3 a^2 (3 A+5 C)+8 A b^2\right ) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{15 a^4 d \sqrt{\sec (c+d x)}}-\frac{8 A b \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{15 a^2 d}+\frac{2 A \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{5 a d} \]

[Out]

(2*(a - b)*Sqrt[a + b]*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a +
 b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(15*a^4*d*Sqrt[Sec[c + d*x]]) + (2*Sqrt[a + b]*(2*a*A*b - 8*A*b^2 - 3*a^2
*(3*A + 5*C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[
c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(1
5*a^3*d*Sqrt[Sec[c + d*x]]) - (8*A*b*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(15*a^2*d) + (2
*A*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*a*d)

________________________________________________________________________________________

Rubi [A]  time = 1.0099, antiderivative size = 394, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.162, Rules used = {4221, 3056, 3055, 2998, 2816, 2994} \[ \frac{2 \sqrt{a+b} \left (-3 a^2 (3 A+5 C)+2 a A b-8 A b^2\right ) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{15 a^3 d \sqrt{\sec (c+d x)}}+\frac{2 (a-b) \sqrt{a+b} \left (3 a^2 (3 A+5 C)+8 A b^2\right ) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{15 a^4 d \sqrt{\sec (c+d x)}}-\frac{8 A b \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{15 a^2 d}+\frac{2 A \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{5 a d} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*(a - b)*Sqrt[a + b]*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a +
 b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(15*a^4*d*Sqrt[Sec[c + d*x]]) + (2*Sqrt[a + b]*(2*a*A*b - 8*A*b^2 - 3*a^2
*(3*A + 5*C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[
c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(1
5*a^3*d*Sqrt[Sec[c + d*x]]) - (8*A*b*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(15*a^2*d) + (2
*A*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*a*d)

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac{7}{2}}(c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{A+C \cos ^2(c+d x)}{\cos ^{\frac{7}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 a d}+\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-2 A b+\frac{1}{2} a (3 A+5 C) \cos (c+d x)+A b \cos ^2(c+d x)}{\cos ^{\frac{5}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{5 a}\\ &=-\frac{8 A b \sqrt{a+b \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}+\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 a d}+\frac{\left (4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{4} \left (8 A b^2+3 a^2 (3 A+5 C)\right )+\frac{1}{2} a A b \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{15 a^2}\\ &=-\frac{8 A b \sqrt{a+b \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}+\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac{\left (\left (-8 A b^2-3 a^2 (3 A+5 C)\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1+\cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{15 a^2}+\frac{\left (\left (2 a A b-8 A b^2-3 a^2 (3 A+5 C)\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx}{15 a^2}\\ &=\frac{2 (a-b) \sqrt{a+b} \left (8 A b^2+3 a^2 (3 A+5 C)\right ) \sqrt{\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{15 a^4 d \sqrt{\sec (c+d x)}}+\frac{2 \sqrt{a+b} \left (2 a A b-8 A b^2-3 a^2 (3 A+5 C)\right ) \sqrt{\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{15 a^3 d \sqrt{\sec (c+d x)}}-\frac{8 A b \sqrt{a+b \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}+\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 a d}\\ \end{align*}

Mathematica [B]  time = 22.1439, size = 2920, normalized size = 7.41 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(9*a^2*A + 8*A*b^2 + 15*a^2*C)*Sin[c + d*x])/(15*a^3) - (8*A*
b*Tan[c + d*x])/(15*a^2) + (2*A*Sec[c + d*x]*Tan[c + d*x])/(5*a)))/d + (2*((-3*A)/(5*Sqrt[a + b*Cos[c + d*x]]*
Sqrt[Sec[c + d*x]]) - (8*A*b^2)/(15*a^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - C/(Sqrt[a + b*Cos[c + d
*x]]*Sqrt[Sec[c + d*x]]) - (7*A*b*Sqrt[Sec[c + d*x]])/(15*a*Sqrt[a + b*Cos[c + d*x]]) - (8*A*b^3*Sqrt[Sec[c +
d*x]])/(15*a^3*Sqrt[a + b*Cos[c + d*x]]) - (b*C*Sqrt[Sec[c + d*x]])/(a*Sqrt[a + b*Cos[c + d*x]]) - (3*A*b*Cos[
2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*a*Sqrt[a + b*Cos[c + d*x]]) - (8*A*b^3*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]]
)/(15*a^3*Sqrt[a + b*Cos[c + d*x]]) - (b*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(a*Sqrt[a + b*Cos[c + d*x]]))*
Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-2*(a + b)*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c +
 d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(
a + b)] + 2*a*(2*a*A*b + 8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c
+ d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (8*A*b^2 + 3*a^2
*(3*A + 5*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*a^3*d*Sqrt[a + b*Cos
[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*((b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(-2*(a + b)*(8*A*b^
2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d
*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(2*a*A*b + 8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqr
t[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Ta
n[(c + d*x)/2]], (-a + b)/(a + b)] - (8*A*b^2 + 3*a^2*(3*A + 5*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c +
d*x)/2]^2*Tan[(c + d*x)/2]))/(15*a^3*(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) - (Sqrt[Cos[(c + d*x
)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(-2*(a + b)*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c +
 d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(
a + b)] + 2*a*(2*a*A*b + 8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c
+ d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (8*A*b^2 + 3*a^2
*(3*A + 5*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*a^3*Sqrt[a + b*Cos[c
 + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-((8*A*b^2 + 3*a^2*(3*A + 5*C))
*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^4)/2 - ((a + b)*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[(a + b*
Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*((Cos[c + d*
x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])
] + (a*(2*a*A*b + 8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipti
cF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x
]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - ((a + b)*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos
[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*(-((b*Sin[c + d*x])/((a +
b)*(1 + Cos[c + d*x]))) + ((a + b*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(a + b*Cos
[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (a*(2*a*A*b + 8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + C
os[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*(-((b*Sin[c + d*x])/((a + b)*(1 + Cos[c +
d*x]))) + ((a + b*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(a + b*Cos[c + d*x])/((a +
 b)*(1 + Cos[c + d*x]))] + b*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c
 + d*x)/2] + (8*A*b^2 + 3*a^2*(3*A + 5*C))*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/
2] - (8*A*b^2 + 3*a^2*(3*A + 5*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (
a*(2*a*A*b + 8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a
+ b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((-a + b)*Tan[(c + d*x)/2
]^2)/(a + b)]) - ((a + b)*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[
c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1 - ((-a + b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sq
rt[1 - Tan[(c + d*x)/2]^2]))/(15*a^3*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + ((-2*(a + b)*(8*A*b^
2 + 3*a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d
*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(2*a*A*b + 8*A*b^2 + 3*a^2*(3*A + 5*C))*Sqr
t[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Ta
n[(c + d*x)/2]], (-a + b)/(a + b)] - (8*A*b^2 + 3*a^2*(3*A + 5*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c +
d*x)/2]^2*Tan[(c + d*x)/2])*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*
x]*Tan[c + d*x]))/(15*a^3*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*
x]])))

________________________________________________________________________________________

Maple [B]  time = 0.247, size = 2243, normalized size = 5.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-2/15/d/a^3*(-3*A*a^3-4*A*cos(d*x+c)^2*a*b^2-15*C*cos(d*x+c)^3*a^2*b+15*C*cos(d*x+c)^4*a^2*b+9*A*cos(d*x+c)^4*
a^2*b-4*A*cos(d*x+c)^4*a*b^2+8*A*cos(d*x+c)^3*a*b^2+A*cos(d*x+c)*a^2*b-10*A*cos(d*x+c)^3*a^2*b-9*A*sin(d*x+c)*
cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+c
os(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b+8*A*cos(d*x+c)^4*b^3+9*A*cos(d*x+c)^3*a^3-6*A*cos(d*x+c)^2*a
^3+15*C*cos(d*x+c)^3*a^3-15*C*cos(d*x+c)^2*a^3-8*A*cos(d*x+c)^3*b^3+9*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-
b)/(a+b))^(1/2))*a^3-9*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(
1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-8*A*sin(d*x+c)*cos(d*x+c)^
3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/
sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3+15*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(
a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-15*C*sin(
d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Elliptic
E((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3+9*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos
(d*x+c))/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/
2))*a^3-9*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d
*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(
1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-
(a-b)/(a+b))^(1/2))*b^3+15*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)
*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-15*C*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x
+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-8*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+
b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2-15*
C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*El
lipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b+2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*
(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a
+b))^(1/2))*a^2*b+8*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+c
os(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2-9*A*sin(d*x+c)*cos(d*x+c)^2
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/s
in(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-8*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(
a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2-15*C*si
n(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Ellipt
icE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b+2*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))
^(1/2))*a^2*b+8*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d
*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2)*cos(d*x+c)*(1/cos(d*x+c))^(7/2
)/(a+b*cos(d*x+c))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac{7}{2}}}{\sqrt{b \cos \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(7/2)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac{7}{2}}}{\sqrt{b \cos \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(7/2)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(7/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac{7}{2}}}{\sqrt{b \cos \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(7/2)/sqrt(b*cos(d*x + c) + a), x)